
Simon Hollingshead

Mitigating the Effects of Software
Repository Key Compromise

Part II Computer Science Tripos

Queens’ College

2013/2014

Proforma

Name: Simon Hollingshead
College: Queens’ College
Project Title: Mitigating the Effects of Software

Repository Key Compromise
Examination: Part II Computer Science Tripos 2013/14
Word Count: 11885
Project Originator: Simon Hollingshead
Supervisor: Daniel Thomas

Original Aims of the Project

To create an alternative package manager that does not suffer from well-documented
protocol-level flaws in existing solutions, made such that multiple package for-
mats can be distributed using it. It must also be a practical replacement, with
minimal overheads and strong foundations on trusted cryptographic libraries.

Work Completed

Generic Package Manager imports multiple package types, currently supporting
Debian and Arch Linux. These packages are transformed into a generic metadata
format, made available for signing, signature checked, then stored. On the client,
the metadata is downloaded, verified, used for dependency resolution, then the
original packages are fetched and passed to an installation API.

Special Difficulties

I did not have any special difficulties during this project.

i

Declaration

I, Simon Hollingshead of Queens’ College, being a candidate for Part II of the
Computer Science Tripos, hereby declare that this dissertation and the work
described in it are my own work, unaided except as may be specified below, and
that the dissertation does not contain material that has already been used to any
substantial extent for a comparable purpose.

Signed

Date

ii

Contents

1 Introduction 1
1.1 Principal Motivation . 2
1.2 Terminology . 3

2 Preparation 5
2.1 Algorithms and Protocols . 5
2.2 Dependency Resolution . 6
2.3 Package Formats . 7
2.4 Security Investigation and Threat Model 8
2.5 Creating an Exploit . 9
2.6 Third Party Tools Used . 10
2.7 Software Development Model . 12
2.8 Requirements Analysis . 14
2.9 Final Test Plan . 14

3 Implementation 17
3.1 Server . 17

3.1.1 Trust Delegation and Key Validation 17
3.1.2 Repository Structure . 19
3.1.3 Abstracting . 21
3.1.4 Combining . 22
3.1.5 Committing . 23
3.1.6 Integration Testing . 24

3.2 Client . 25
3.2.1 File List . 25
3.2.2 Dependency Resolution . 27
3.2.3 Installation and Removal 30
3.2.4 Integration Testing . 30
3.2.5 Download Nuances . 31

iii

4 Evaluation 33
4.1 Overall Security . 33

4.1.1 Comparative Amount of Communication Security 33
4.1.2 Resilience to Key Compromise 34

4.2 Performance testing . 35
4.2.1 Server . 35

4.2.1.1 Acceptable Daily Rate 35
4.2.1.2 Most Popular Packages 36
4.2.1.3 Ease of Implementation 39

4.2.2 Client . 40
4.2.2.1 Dependency Resolution 40
4.2.2.2 Comparative Filesizes 42

4.3 Testing Summary . 43

5 Conclusion 45
5.1 Completion Of Requirements . 45
5.2 Areas Needing Improvement . 46
5.3 Future Work . 47
5.4 Closing Thoughts . 48

Bibliography 49

A Excerpt of Debian Policy Manual Chapter 5 53

B Excerpt of Portage Documentation 54

C Correct attempt to install ‘kernel’ and ‘bc’ 57

D Hijacked attempt to install ‘kernel’ and ‘bc’ 58

E Excerpts from Interpreter_DEB 60

F Project Proposal 63

iv

Chapter 1

Introduction

My project was to create a new package manager less prone to man-in-the-middle
tampering than existing package managers have been documented to be. Rather
than specialising this to a given package format, my intention was to produce
a system operating on an abstract representation for packages. A distribution
would be able to specify a transformation into the internal representation without
modification to their package layout, then distribute this new package manager
as a replacement for their existing executable.

The result, Generic Package Manager (GPM), uses industry-standard asym-
metric public key cryptography to sign packages of multiple filetypes entering the
system. A chain of trust is built through multiple signatures at multiple stages
in the workflow, allowing far more reliable identification of when a connection
has been tampered with than many conventional package managers. In the case
of key compromise, GPM is at least as resilient as every other package manager
tested, in most cases being able to restrict the damage to a far lesser class of
attack. For example, at least three separate packagers’ keys have to be com-
promised to successfully install an arbitrary package on a user’s machine. The
method of multiple key signing only slightly augments the existing workflow of
distributions’ packagers, using the second and third signatures similar to quality
assurance on the package’s content.

To make the program a realistic option for distributions, I have made every
effort to make the overhead of the added security as small as possible. The
package manager not only readily presents signers with a collection of files that
are in need of signing, reducing the difficulty of identifying what is due to happen
next, but the batch nature in which packages can be signed and imported into the
repository reduces some of the more significant overheads through amortisation.
On large scale imports, Debian packages import in an average of 1.28 seconds
each, the far simpler Arch Linux format taking only 14.7 milliseconds each.

1

2 CHAPTER 1. INTRODUCTION

1.1 Principal Motivation

Linux distributions generally retrieve their applications from a software repository
run by the distribution. Source code or compiled applications are produced by a
party the distribution trusts, placed into archives called ‘packages’ with additional
metadata1, then uploaded into repositories. These repositories are standard web
or FTP servers containing these files for download, copies of which are mirrored by
volunteers with spare bandwidth as an act of generosity towards the distribution.
Package manager clients come pre-installed on Linux distributions to allow the
fetching and installation of software from a mirror.

Communication between a client and a repository passes through three dis-
tinct stages:

1. A small (< 200 KB) file listing is fetched from the server to quickly identify
if metadata caches on the client are still valid.

2. If the cache is outdated, a large (∼ 10 MB) metadata file is fetched, detail-
ing dependency information about all available repository packages. This
allows the package manager to identify any additional that will need to be
downloaded to satisfy an installation.

3. Finally, the relevant package files are downloaded and installed.

From 2008, researchers have investigated the security of the protocols used
between clients and their repositories, and have recognised three main severities
of attack [9], here listed from most severe to least:

Package modification The package manager does not detect if the package has
been altered or entirely replaced, compared to the original created by the
distribution. This allows an attacker to both place arbitrary files anywhere
on a victim’s system and to write their own post-installation shell script,
which will automatically run as the root user.

Metadata modification By altering dependency data, the resolution phase can
be coerced to fail to schedule a required install, leaving a broken package, or
install too many packages, increasing exposure to vulnerabilities. Alterna-
tively, the download location can be altered to point to an old yet legitimate
package, therefore not caught by any package modification defences.

1Other packages may need to be marked as either required to be installed for functionality,
or marked as incompatible and conflicting.

1.2. TERMINOLOGY 3

Freeze attack By repeatedly returning the same file list on every update re-
quest, a package manager can be coerced into believing there are no up-
dates. Over weeks or months, vulnerabilities for these now-old packages
may surface and become exploitable.

Stork package manager [8] researchers also mention two further attack vectors
[6, 7]. By initially being a legitimate mirror, serving malicious packages is far
easier than being a man in the middle. This is fixed by package signing. The
second, the endless data attack, overwhelms a machine with a package too large
for their hard drive. I describe how GPM’s implementation fixes it in Section
3.2.5.

It was not until February 2011 that I became aware of package manager
insecurity, when blog posts [13] and subsequent news articles [39] reported that
Arch Linux’s lack of package signing meant it fell vulnerable to all three attacks.
Although the package modification problem was fixed in December 2011 [26], it
demonstrably remains vulnerable to both other attack classes as of April 2014,
as I have performed those exploits in Chapter 2.5.

Other package managers have also been slowly converging on more secure
protocols, incrementally adding signatures to each phase of the communication.
However, since no package manager is yet ‘fully-secure’ by these standards, a man-
in-the-middle is still able to identify the repository, infer the package manager,
then leverage the most devastating attack to which it is vulnerable. The number
of people and important machines left without a solution led to my intention to
resolve it for my project. By putting effort into repairing it once in a reusable
way, rather than allowing each package manager to spend time only on their own
fixes, I believe the work will be more useful to the community as a whole.

1.2 Terminology

To ensure clarity for the rest of this dissertation, an issue does exist with the term
‘package manager’ being used by two classes of application. Firstly, tools like dpkg
and rpm. These are programs that are aware of the full package specification,
install and delete packages by manipulating the filesystem, and provide APIs
to allow third-party applications to request these same actions. The second is
the class into which apt and yum fall, using the former group’s APIs to extend
functionality with features such as Graphical User Interfaces, web downloading,
and partial upgrades. If the package format were to change, only the former group
would need to be altered to handle this, since the exposed API would remain the
same, but now perform the new actions.

4 CHAPTER 1. INTRODUCTION

During the rest of this dissertation, when GPM is being referred to as a
‘package manager,’ it falls into the latter class, since it has not been designed
to know the full specification of any package type, and has been built to use
provided APIs extensively so as to focus more on implementing parts that have
not been created in this way before.

Chapter 2

Preparation

This section details the work undertaken to fully understand how to implement
the project, including algorithm research, security research, exploit creation, and
general pre-development design and planning.

2.1 Algorithms and Protocols

The initial insights into the correct protocol to use came from the previously
mentioned 2008 paper by Cappos [9] and a second he co-authored two years
later [33]. Between these, a relatively complete set of foundations is formed,
from exploits to their mitigation. In particular, they discuss the design decisions,
benefits and weaknesses of each of three attempts.

The still semi-vulnerable1 Stork package manager is a first foray into produc-
ing a rebuilt protocol to take advantage of added communication security. This
includes use of keys on stages, and introduction of a safe order in which to request
files from the repository to build up a chain of trust.

The additions made to the concepts behind Stork are given in the specifica-
tions of Thandy [24], the updater for the Tor executable, highly specialised yet
necessarily designed to be secure, and the TUF protocol, an attempt to serve
more arbitrary packages using the mechanisms provided by Thandy. TUF and
its implementation of Python easy_install package management demonstrated
a system close to my intentions for GPM, although in a non-generic form.

By reading the academic papers, I was able to gain an appreciation of the
mechanics behind the security in the communication. Firstly, the use of public
key cryptography [16, 17] to trust a file, rather than a server. This allows any
person to mirror without having to trust them; installation will fail if the package

1Stork does not sign its file list, allowing package freezing.

5

6 CHAPTER 2. PREPARATION

and signature no longer match. Secondly, understanding of the user’s ‘compliance
budget’ [36] by including an amount of keys that is sensible within a standard
import workflow, reducing the likelihood of users or packagers attempting to
circumvent the technology. In addition, having non-expiring package signatures
avoids the annoyance of old-but-current packages in the repositories needing their
signatures periodically refreshed to ensure they don’t expire unnoticed and cause
uninstallable periods2, but allows earlier packages to masquerade as ‘current’
under metadata replacement.

The repository itself functions like a database, a store that is expected to
provide consistency and transactional uploads [11], often including the ACID
properties [38], Atomicity, Consistency, Isolation and Durability. Transactions
stop a package’s uploads appearing before its dependencies also appear, or there
will be no possible way to install it.

Finally, investigation was made into implementing the protocol’s messages,
specifically how to keep data structures valid after an update without a mass-
reimport. The Further Java [32] course demonstrates class serialization to pro-
duce messages between repository and client, and version numbering to retain the
validity of old messages, necessary to support old package managers attempting
to update themselves.

2.2 Dependency Resolution

After investigating the protocols, I realised that the most recent proofs of concept,
namely Thandy and TUF, did not use nor expose dependency resolution features.
Dependency resolution determines which other packages are required in order to
install or upgrade a given package. For this reason, I identified algorithms used
to schedule a partial order of dependencies. Multiple algorithms exist for this,
all variants on identifying nodes with no predecessors and emitting them first.
Although most are recursive [5, 19, 29, 35], Knuth’s [15] algorithm is far simpler,
using only an array of linked lists and a priority queue, shown in Figure 2.1. If x
must come before y (x ≺ y), y is contained in the linked list in element x of the
array. The queue holds each element with priority ‘how many predecessors?’3.
By repeatedly removing the minimum from the queue, necessarily zero4, leaves
are found and scheduled. Each element of the removed node’s linked list are then
decremented in the queue to signify a handled predecessor.

2This is similar to administrators who forget to renew their SSL certificate and cause all
users warnings and errors for hours.

3The number of times the element appears in any linked list.
4If all nodes have a predecessor, there is a cycle.

2.3. PACKAGE FORMATS 7

Figure 2.1: Algorithm T storing a ≺ d, a ≺ c and d ≺ c.

Package managers, however, have extra considerations. For efficiency, the
claim that “if a package is installed, all of its dependencies are assumed to be
installed” is made. This is based on the assumption that the package manager
would have handled those dependencies during the prior install. Another alter-
ation is the inclusion of a second class of edge, for deletions, where any conflicting
packages that are installed must be scheduled for removal before the related in-
stall occurs.

2.3 Package Formats

A general package is an archive containing a copy of the OS directory structure
with the files for the given package, plus extra metadata control files. An example
of this can be seen in Figure 2.2. Since the package manager would need to extract
multiple package formats, I began by referencing the format specifications for
.deb [14], .rpm [2], .ebuild [25] and .pkg.tar.xz [27] to find the common properties
in each, and the location in the package in which the relevant metadata to extract
was held. I was able to identify features that all formats had (name, version,
depends, breaks, provides), and some fields only provided in some distributions
(epoch5, suffix6).

5The epoch is prepended to the version number such that a lesser version number can still
be considered an upgrade: If v16 is followed by v0.17, e1.0.17>e0.16.0.

6Some packages may be marked as ‘beta’ or ‘rc’ and only considered by some users who
accept unstable software.

8 CHAPTER 2. PREPARATION

gimp.deb
control.tar.gz

control
md5sums
postinst
postrm

data.tar.xz
usr

bin
gimp

...
lib

gimp
...

share
applications

...
man

debian-binary

Figure 2.2: The directory structure of a Debian package.

Initially, I believed that most computation would be generic, with a single
GPM implementation. However, on comparing specifications, I recognised that
version numbers could not be compared generically. As an example, Debian’s
method (Appendix A) splits the string on each boundary between integer and
non-integer substrings, whereas Gentoo’s (Appendix B) considers ‘.’ the only
boundary character. The comparison of ‘7r1.6’ and ‘72.0’ on Debian would pro-
duce ‘7|r|1|.|6’ and ‘72|.|0’. Since 7 < 72, the latter string is greater. On Gentoo,
the splitting produces ‘7r1|6’ and ‘72|0’ where, since 7r1 > 72 using standard
string comparison, the former is greater. As there is no way around this, each
package type must specify its own version comparison function.

2.4 Security Investigation and Threat Model

Next, I investigated implementations of key generation and signing, a crucial part
of the system. In September 2013, NSA leaks led cryptography experts to warn of
insecurities in Dual_EC_DRBG elliptic-curve cryptography [30]. The claim was
that the standard implementation had been deliberately weakened. Due to this,
it was at the forefront of my mind that I needed to investigate use of multiple

2.5. CREATING AN EXPLOIT 9

key types, and specifically which would function well together. RSA and DSA
keys can both be generated and used from openssl, and if one were found to
be weak, the still-strong other keys would still defend against the worst forms of
attack until the weak class could be replaced.

NIST, the US Federal Agency responsible for security standards, advises [3]
that to generate a key secure against computation-based attacks until at least
2030, RSA private keys should not be less than 2048 bits in length, and DSA
private keys should not be under 224 bits (with a corresponding 2048-bit DSA
public key). In the interest of enforcing security, my package manager would not
permit weaker keys.

The threat model in the academic papers, which GPM must secure against,
is incredibly far-reaching, just that any message may be responded to by the
malicious party without indication it is not the legitimate party. Examples of
attackers that pose a threat in this way include:

• Someone on the LAN performing ARP spoofing to become an intermediary
for packets.

• Someone in a coffee shop pretending to be ‘free Wi-Fi’ to observe commu-
nication.

• State-mandated alteration of traffic by ISPs.

• Malicious files inserted into legitimate repositories.

• Malicious repositories.

GPM only needs to secure against these in certain circumstances. For exam-
ple, it is not possible to guarantee secure communication on an already compro-
mised machine, nor is it possible to guarantee the package manager was down-
loaded securely given that the download occurs over a less secure protocol7. It is
also required for users never to install packages through alternate means. If a user
manually installs a local package file, even if they check the signature’s validity,
they have bypassed the file and metadata phases, so a single key compromise
allows package replacement attacks.

2.5 Creating an Exploit

Given I had investigated the correct way to do secure communication, I also
wanted to perform the attacks hinted at in the papers. In only one day, I was

7Careful signature and hash checking is required for a user to trust the download, but the
signature and hash specified on the website may also be forged.

10 CHAPTER 2. PREPARATION

able to create a simple, fully-working metadata modification attack capable of in-
stalling old versions of Arch Linux packages or inserting alternative dependencies.
It took only these steps:

• Download the real ‘core.db’ metadata file from any repository mirror.

• Open it (it is a .tar.gz archive). It contains one directory per package in
the repository, each containing plaintext files such as ‘depends’ and ‘desc’.

• In the case of installing old versions, copy across the directory from an old
‘core.db’, and also take a copy of the old package. This will replace the
newer directory, now causing the files to containing an old version number,
filesize, file hash and GPG package signature. In the case of adding packages
to install, add extra lines to the ‘depends’ file8.

• Upload the altered ‘core.db’ (and all packages) onto a webserver you control,
following the same directory structure as the legitimate server. If using
Apache, ensure VirtualHost accepts requests destined for the repository’s
domain name.

• Run the Arch Linux live CD. This step demonstrates how pacman is pre-
configured insecure to this attack.

• As a man-in-the-middle, rewrite all requests to the default repository IP
(108.59.10.97) to your own server. In my case, I altered routing on the host,
not inside the virtual machine, using ‘iptables -t nat -I OUTPUT –dest
108.59.10.97 -p tcp –dport 80 -j DNAT –to-dest 178.79.160.57’.

• Run pacman -Syy to check for new metadata. The package manager will
now incorrectly calculate results for install requests.

Examples of correct and incorrect operation due to this attack can be seen in
Appendices C and D respectively.

2.6 Third Party Tools Used

Next, I turned my attention to exactly how I would carry out my project, be-
ginning with finding existing tools to perform some components that I either did

8I only added ‘cheese,’ however the CLI-only live CD resolved dozens of additional required
dependencies.

2.6. THIRD PARTY TOOLS USED 11

not wish to, or could not safely, write myself. By selecting Maven as a build tool,
I was able to import and keep up to date all libraries automatically.

Rather than attempt to implement my own cryptography functions, some-
thing I could very easily do incorrectly, I chose to follow best security practice
and use established key generation libraries with many man-hours put into their
development, bug-fixing and cryptanalysis. Therefore, all RSA and DSA keys
for the system are produced by openssl commands and the validation work per-
formed by the java.security.* libraries. Before starting, I performed a series
of acceptance tests to ensure that only the correct file, signature and public key
inputs would ever return confirmation of a valid signature, showing I was using
the libraries correctly. These tests highlighted variations between expected and
actual behaviour, such as the default key format, PEM, not being recognised by
Java and constantly causing the signature check to return false. On altering the
openssl command to generate DER-formatted keys, the system began working
exactly as intended.

To simplify implementation and avoid Java’s quirks, I also decided to use the
Apache libraries for Java, a set of more simple and, by extension, more useful
Java functions. Commons Exec, for example, makes calling the command line
easier, and Commons Compress makes extracting compressed packages a single
line.

Since most of my project focused on the backend, attempting to create a beau-
tiful user interface was not a top priority. Instead, I located JewelCli [40], a Java
library which automatically generates the majority of such code. Twelve lines
encapsulates all required command line interaction for my application, including
a --help command.

@CommandLineInterface(application = "gpm")
public interface GPMInterface {

@Option(shortName = "i")
List<String> getInstall();
boolean isInstall();
@Option(shortName = "u")
boolean isUpdate();
@Option(shortName = "m")
boolean isFetchMetadata();
@Option(helpRequest = true)
boolean isHelp();

}

Then, a query ‘gpm -i bash zsh’, causes isInstall() to be true and getInstall()

12 CHAPTER 2. PREPARATION

to be the list [bash, zsh]. Use of this powerful library saved me many hours of
work.

2.7 Software Development Model

Since the concept lends itself well to a modular design, bisected into the client
and server side components and then further split into parts regarding the three
stages of communication, bottom-up appeared the ideal design for me. This is
shown in Figure 2.3. By pre-defining the interface between each, I could work
on components in any order, use integration testing to ensure correct operation,
then combine them.

Each module could be created in multiple commits to a Git repository on
GitHub. This would allow a series of benefits. First, remote backups would be
inherent, since copies would exist on the external servers. Secondly, work could
be rolled back by undoing the patch sets that added the faulty feature. Finally,
it would allow me to follow the changes being made over time to track progress
and identify how close to being on schedule I was.

Below, I have provided the simple statements of each module, produced for
later functionality testing.

• Trust delegation is correct iff a key signing a phase of the transaction is
untrusted until it is placed in the keyring signed with the root key.

• Abstraction is correct iff the stage is able to accept a package file as a single
input and output a GPM-defined data file containing all properties of the
package required for further computation stages.

• Delta combining is correct iff a set of individually created metadata files
for separate packages are combined into a single data structure in a single
file after their signatures have been confirmed to be correct.

• Committing is correct iff, for any given import transaction, all packages are
imported and represented in the data structure atomically, or none of them
are added due to an abort operation at any stage up to the final file copy
procedure.

• File downloading is correct iff, when provided a URL, the file is fetched and
saved in a file on the local machine.

• Signature checking is correct if, for a given public key, ‘true’ is returned iff
a file and signature are provided that correctly correspond to use of that
user’s key in a role that they are permitted to perform.

2.7. SOFTWARE DEVELOPMENT MODEL 13

Figure 2.3: The breakdown of GPM into its constituent parts.

14 CHAPTER 2. PREPARATION

• Dependency resolution is correct iff, when provided a package or a set of
packages, the returned result is a list of all packages that must also be con-
sidered plus those given as input parameters. The list must be provided in
an order that correctly respects the partial ordering given in the dependency
graph.

• API interaction is correct iff, for a call to install or upgrade a package, the
correct system call is invoked to non-interactively perform the local action
on behalf of the package manager.

2.8 Requirements Analysis

On a higher level, the requirements that were understood from the start were as
follows:

1. The package manager must be capable of installing and upgrading software
packages without ever altering their internal representation.

2. The package manager must be capable of throwing errors in cases where
any of the communication has been manipulated if no keys have been com-
promised.

3. In the case of key compromise, the package manager must be at least as
capable of identifying attacks as existing package managers.

4. The package manager must have the core of its code written independent
of the input format.

5. The transformation must take less time to run on a package than would
cause a backlog under standard import rates for distributions.

6. Since a package manager and its dependencies must necessarily be installed
on every machine that runs the distribution, the language of choice must
not cause an excessive amount of otherwise unneeded packages.

These will be referred back to after development and testing to confirm they
have been met.

2.9 Final Test Plan

Although integration testing would identify the suitability of each component,
the overall indication of success would be in the results of the entire workflow

2.9. FINAL TEST PLAN 15

and its emergent behaviour. To this end, I devised a series of metrics on which
the system’s usefulness could be determined. Since it is not possible to identify
the time existing distributions take to import packages or to perform only depen-
dency resolution, the results provided have to be given relative to some worst-case
scenario where they become unacceptable.

1. Show that the amount of signing and, by extension, thefts required for
key compromise is greater than or equal to that of other popular package
managers.

2. Packages must be shown to be imported at a rate that does not cause a
backlog other than during ‘peak’ times for clearing during ‘off-peak’. Import
rates for the most popular packages must be acceptable, whereas poorly
performing rare outlier packages can be considered permissible, provided
the reason for failure can be justified.

3. A second package format should be implemented and the number of lines
of code within package-specific classes counted. This number should be
sufficiently low (on the order of hundreds of lines) to justify the effort as less
than that of writing a new package manager or retrofitting a new protocol
to an old codebase.

4. Dependency resolution should take place, for a legitimate package9, at an
average speed that is unlikely to cause user dissatisfaction.

5. The additional overhead of the increased security should be demonstrated
to be an acceptable percentage change from the existing size of a repository
storing the exact same files.

In order to test these, I would need access to many packages for a distribution.
Since Debian has one of the largest package offerings, I cloned the Debian repos-
itory before I had started the project, to ensure I had the files I would require
months later, when testing.

9Any dependency resolution algorithm will take a time proportional to the size of subgraph it
must traverse. Therefore, a pathological case can always be made by adding more dependencies
until the time becomes ‘unacceptable,’ but it is alright for this to only affect manufactured,
unrealistic packages.

16 CHAPTER 2. PREPARATION

Chapter 3

Implementation

This chapter provides full details about all components within the GPM executa-
bles. This is split into sections on key delegation, on using the server to import
packages (corresponding to Figure 3.2), and on using the client to fetch packages
(corresponding to Figure 3.4). At the end of each subsection, I mention tests
performed to confirm each module’s functionality. At the end of both sections, I
also mention tests over the assembled workflows.

A full UML class diagram, showing the composition of the classes that make
up the serialized files passed between server and client, is given in Figure 3.1.

3.1 Server

3.1.1 Trust Delegation and Key Validation

The user trusts the distribution, or they would not be running it. However, the
distribution is not solely responsible for package uploads, therefore they require
the ability to delegate their trust onto other users. To do this, the distribution
must generate their RSA1 or DSA2 root key and store it safely, perhaps even on
an airgapped machine to reduce compromise possibility, then use it to sign some
collection of trustworthy keys.

In order to create a keyring, a user needs to create a SigningKeysRW instance,
an object that maps unique user identifiers to their SigningKey. This contains a
public key, keytype, expiry and set of permissible roles, along with a function to
validate if a <file, signature> pair was created by the key. In its current state, the

1openssl genpkey -algorithm RSA -out priv.pem; openssl rsa -in priv.pem
-pubout -outform DER > pub.der

2openssl dsaparam -out param.pem 2048; openssl genpkey -out priv.pem
-paramfile param.pem; openssl dsa -in priv.pem -pubout -outform DER > pub.der

17

18 CHAPTER 3. IMPLEMENTATION

Figure 3.1: The UML class diagram for the serialized constructs.

3.1. SERVER 19

.pkg.pkg.pkg.pkg

Abstract

.sig.sig.sig.sig

.metadel
.metadel

.metadel
.metadel

.sig.sig.sig.sig

Combine
metadata

filelist

.sig .sig

 Commit

.pkg.pkg.pkg.pkg
.sig.sig.sig.sig

metadata

filelist

.sig

.sig

Figure 3.2: The GPM server-side workflow.

enumeration of trust levels allows package, metadata or filelist signing, however
it has the ability to be arbitrarily extended to groups of packages. This would
restrict compromise to only some subset of packages for which the key could be
reused if stolen.

Once the distribution has inserted the correct keys they trust, they can cast
this to a SigningKeysRO, a parent class missing modification functions since
no other phase has any right to be altering the keyring, then serialize it. Using
openssl, this serialized file needs to be signed3, and both files need to be uploaded
to the root level of the repository. These two files, ‘keyring’ and ‘keyring.sig,’
provide both the server and client knowledge of which files are trustable.

Testing of this module was similar to Section 2.6, checking the function cor-
rectly returned if the key signed a given file and signature, but also confirmed
key expiry correctly made it return false.

3.1.2 Repository Structure

An example of GPM’s repository structure can be found in Figure 3.3. In the
repository, there is a single writeable directory, called ‘incoming,’ into which main-
tainers can upload packages and signatures. All files created by the executable
during a transaction are placed in a second directory, called ‘interim,’ to which
signers have read access only. This is necessary so they can see any generated
files they are required to sign. Every accepted package is stored in ‘packages,’
under three directories, one with only the first letter of the package name, then

3e.g. openssl dgst -dss1 -sign priv.pem -out keychain.sig keychain for DSA.

20 CHAPTER 3. IMPLEMENTATION

/
incoming

newpkg1.deb
newpkg1.deb.sig
newpkg1.deb.sig.owner
newpkg1.deb.metadel.sig
newpkg1.deb.metadel.sig.owner

incoming_staging
interim

newpkg1.deb.metadel
metadata
filelist

packages
l

li
linux

linux-3.8.deb
linux-3.8.deb.sig
linux-3.8.deb.sig.owner

x
xo

xorg-server
xorg-1.15.deb
xorg-1.15.deb.sig
xorg-1.15.deb.sig.owner

rootkey.der
keychain
keychain.sig
metadata
metadata.sig
metadata.owner
filelist
filelist.sig
filelist.owner

Figure 3.3: An example filesystem layout for the GPM repository while in use.

3.1. SERVER 21

one with the first two, then one with its full name.
Using nested subdirectories containing progressively larger substrings of the

original filename is a speed optimisation for accessing contents of the directory.
This is due to the fact the Linux filesystem using indirect, doubly indirect, and
triply indirect pointers to store the block locations of progressively longer files
and directories [18], meaning larger directories take longer to read.

The fact that all state for this repository structure is held in the special files at
the root level and inside the ‘packages’ directory means the system is very easily
mirrorable using rsync commands. This is identical to the general practices most
distributions use to synchronise mirrors with their canonical ‘up-to-date’ mirror
already.

3.1.3 Abstracting

The first stage converts the distribution specific packages into the GPM internal
representation. To do this, package maintainers upload packages into ‘incoming,’
with a corresponding ‘.sig’ signature file created using their trusted key, and a
‘.sig.owner’ text file containing only their unique identifier. The owner file is
required, as signatures do not contain information about the related private key,
so an index into the SigningKeysRO structure is required.

When GPM’s server importer is run, the list of incoming files are read and,
using the Strategy design pattern, the correct Interpreter-implementing class
is run based on the package suffix4. This is a loosely coupled design, since the
main function makes use of the Interpreter without any consideration for which
specialisation is made. In fact, all returned values from the Interpreter are
never related back to which concrete instance created them; it would be possible
to create two different packages in two different formats that produce identical
metadata.

The first function expected of all Interpreters is prereqMet(), a boolean
returning function that states if the Interpreter is capable of running, such as
after a check for required external executables or the JVM version.

Assuming prerequisites are met, the only other required function is called,
genMeta(File f). It performs all the work; emitting a RepoPackage that ade-
quately describes the input package by parsing out the relevant information and
calling setters on the RepoPackage object.

To add depends, breaks and provides, Dependency objects are instantiated
and added to arrays within the RepoPackage object. These contain the depen-

4A file-like method for identifying a package would be more useful, except that many
package formats only look like a standard compressed archive from the outside.

22 CHAPTER 3. IMPLEMENTATION

dency identifier5, a comparator and version for constraints on the dependency6,
and a sequence number7 to indicate if any dependencies are equivalent.

Rather than setting the hash or filesize manually, however, GPM will insert
this information. This is because it is not a property of the package format; no
Interpreter should need to be changed if the hashing algorithm used within
GPM is altered.

The automatically generated timestamp on each of the RepoPackage, Metadata
and FileList classes is crucial; if a signer submits a signature then wishes to
retract it, deleting the uploaded ‘.sig’ file is insufficient. A second user can take
a copy of the signature and reupload it, and it will still be valid. By the revoker
pushing a file named ‘reset’ into the incoming directory, GPM purges the interim
files. On GPM’s next run, the files will be regenerated in a new transaction,
however the differing timestamp will invalidate the signature on the file.

In Appendix E, I have provided the core of the Java code for extracting
metadata and dependencies from a .deb package. In order to test its operation,
I performed white box testing, attempting to form DEB packages that I did not
believe it would be able to handle, and observing its operation. These included
packages with no dependencies, multiple equivalent dependencies, and specifically
versioned dependencies. After confirming the contents of multiple RepoPackages
were correct for the corresponding archive, I considered this section complete.

3.1.4 Combining

Once RepoPackage instances have been serialized onto disk in ‘.metadel’ files (so
called because these are delta additions to the metadata file), the system refuses
to import any more packages, considering the serialized RepoPackages to form a
single transaction. It must atomically succeed or be reset in the manner described
in the previous section.

Since differing people may have the prerequisite knowledge to sign off the
different packages making up a single transaction, signatures are collected on
these ‘.metadel’ files from those with keys with metadata signing permissions.
This barely alters existing workflows for package updates, in that rather than
marking acceptance on a bug tracker, the same person uploads the signature for
the package in agreement.

5Dependencies may be on a package name or, in the RPM case, on files within a package.
6A dependency constraint of ‘<=3.9.6’ would become a comparator of ‘LE’ and a version of

‘3.9.6’.
7If the distribution contains AND and OR relations, the dependencies must be converted to

Conjunctive Normal Form. (python2 ∨ python3)∧ (mysql ∨ mariadb) will assign python2 and
python3 sequence number 1, and mysql and mariadb sequence number 2.

3.1. SERVER 23

On running the executable again, if all ‘.metadel’ files have been signed cor-
rectly, a new ‘metadata’ and ‘filelist’ are emitted that have the correct changes to
take into account the new transaction. Any person able to sign metadata can sign
the new metadata file as a formality, as others have signed each constituent part
of it to form consensus that the entire package database is acceptable. A gate-
keeper responsible for considering validity of transactions as a whole then signs
the file listing, a small file that references the newest version of the metadata and
keyring files by hash and total length.

In this way, the three signers have successively given oversight to a broader
view of the transaction. First, the package creator signed to say they believed the
sources or compiled application in the package was correct. Next, the metadata
signer ensured the package creator was not acting maliciously, and also that all
distribution-specific additions, such as the dependency lists, had been created
correctly. Finally, the file listing signer had validated that the transaction of
multiple packages would be acceptable for import, catching errors like uninstal-
lable packages, dependency cycles, and any scheduling considerations, in the case
where transactions occur at given intervals8.

Confirming the correctness of this module was relatively simple. Given a
metadata file and a series of RepoPackage instances, I only had to confirm that
the result was a metadata file with the new entries also inserted. All tests related
to the transactional nature of the system were performed later.

3.1.5 Committing

The final stage of importing a package into the repository performs all compu-
tations again for safety reasons, with all incoming files moved into a read-only
staging area. The package and package signature are confirmed to match, the
RepoPackage is regenerated with the old timestamp to ensure the package hasn’t
been replaced since its initial import, the signature for the delta is tested, then
finally the signatures for the combined files are tested9.

Any failure on this stage causes the transaction to abort and the staged files
to return to the incoming directory, although the transaction will not reset itself.
If the phase succeeds, however, each package, its signature and its owner file
move to the correct subdirectory in the package tree. Since the metadata and file
listings remain unchanged at this point, all client requests still see the old data

8A company with a repository for quality-checked packages for employee machines may have
a release schedule.

9If all stored ‘.metadel’ files are valid, the merge stage must be correct, since the operation
was on files in a read-only directory.

24 CHAPTER 3. IMPLEMENTATION

and can download the old packages, which are not removed.
The alterations to metadata and filelist will indicate to clients a new transac-

tion has occurred, however moving in either order provides a period of potential
failure. If the filelist is moved first, clients will attempt to update to the new
metadata mentioned, but find the one they download to be for the prior trans-
action and therefore have the wrong hash. If the metadata is moved first, any
person that has an even older metadata file will see the prior transaction’s in
the filelist, attempt to fetch it, but retrieve the new metadata with the wrong
hash. All clients with the previous metadata file will still believe it is the newest,
though, and skip the download phase. The latter is the method GPM takes,
specifically because of the fewer number of users affected.

A possible addition, not included in GPM currently, would be to retain mul-
tiple metadata files. This would provide perfect atomicity; the second metadata
file would exist with a different name, then the pointer in the metadata file would
swap to indicate this new file. This, however, was intended to be part of a larger
extension of pruning: the deletion of old packages, the cleanup of the Map inside
the serialized Metadata object, and the ability to keep n old metadata files.

Once the files have been moved into place and the metadel files have been
purged, the system is ready to start another transaction using the new files as
the basis. It is important to note that all four ACID properties are provided to
some level by the commit stage. The act of transactions produces atomicity. The
system applies RepoPackage instances to a valid metadata file to produce another
valid metadata file, providing consistency. Isolation is achieved by never allowing
simultaneous transactions, forcing a sequential order. Durability is intended to
be provided by the underlying filesystem, Java’s move function accepting a pa-
rameter10 that states the entire file must be moved atomically and permanently.

Tests related to committing were minimal, simply that moves never caused
unintended overwrites, a situation fixed through renaming the package to its
name and version, and only overwriting in the case where these are identical11.

3.1.6 Integration Testing

All of the pieces of the server were finally fitted together to ensure packages flowed
through from initial input to result. All tests passed, the system allowing me to
import hundreds of packages at a time in transactions.

Multiple attempts at breaking the workflow were made. These included delet-
ing signatures after they had been checked, altering the packages, and replacing

10StandardCopyOption.ATOMIC_MOVE
11In this case, the Metadata is also overwritten, perhaps to fix a faulty package commit.

3.2. CLIENT 25

the package and its signature to another valid pair, all caught by the regeneration
step. It was possible to break the repository by sending the process a SIGKILL
while it was performing the transaction, however in the case where only packages
had been moved, uploading the same packages again and carrying out the trans-
action was sufficient to overwrite the package and insert the metadata into place.
In the case where the filelist and metadata were from different runs, because only
one had been copied, the repository required manual intervention to revert to a
consistent state. This issue has not been fixed, since it would be an incredibly
rare occurrence.

3.2 Client

The GPM client interacts with the repository to install packages or upgrade
a system12 using the generic metadata file produced by the repository. After
computation has been performed, the required packages are downloaded and
handled by the relevant distribution-specific API. In this manner, GPM’s final
downloads are of binary files that it cannot interpret, but that it has resolved are
necessary through the GPM serialized data structures that it is able to read. A
full run of GPM is given in Figure 3.5, and its output is described in each of the
following sections.

3.2.1 File List

On issuing a request to update metadata, the file listing is downloaded and
checked for a valid signature using the client’s locally cached copy of the key
store. The root public key is hard-coded into the application; it is not trans-
ferred during the protocol as this would give an opportunity for an attacker to
attempt to alter that key with his own.

If the trusted keyring mentioned in the file list is different from the one cached
on the machine, the remote copy is downloaded and signature checked, then the
entire protocol resumes from the start. The restart is not strictly required, since
attacks that could be leveraged with a stolen key would seek to stop clients
downloading the information about the revocation, therefore never leading to the
situation where the system learns of a revocation then immediately finds that the
file listing is signed by a now-invalid key. However, it is safer than optimising
it away to avoid the potential that additions to the start of the protocol will be

12Package queries and deletions have not been implemented, since they would uninterestingly
call a CLI command and output it to the screen with no extra computation.

26 CHAPTER 3. IMPLEMENTATION

START

Fetch file listing

Is cached key
list newest?

Is metadata
newest?

Fetch key list

 No

 Yes

Fetch metadata

 No

Dependency Resolution

 Yes

Fetch packages

Locally install packages

END

Figure 3.4: The GPM client-side workflow.

3.2. CLIENT 27

gpm -m
Checking file list... Metadata not up to date.
Downloading metadata... Newer metadata file cached.

gpm -i openbsd-netcat
The following schedule has been created:
- Install libbsd
- Delete gnu-netcat
- Install openbsd-netcat

Downloading libbsd... OK
Downloading openbsd-netcat... OK

Installing libbsd
Deleting gnu-netcat
Installing openbsd-netcat

Figure 3.5: Installing openbsd-netcat using GPM.

skipped because of this, leaving opportunities for security failures.
Once the key list in the cache matches that reported by the correctly signed

filelist, the metadata hash is checked to see if the metadata requires downloading.
If so, it is fetched and validated, otherwise the existing metadata file is used.

Integration tests were performed on this part to confirm that the system could
identify the inconsistency between local and remote copies of cached files after
new transactions had taken place.

3.2.2 Dependency Resolution

The metadata file, as generated by the server, is a map of maps of package
information. By selecting a package name, then a version of this package, all
metadata is returned as an object, as illustrated in Figure 3.6.

28 CHAPTER 3. IMPLEMENTATION

(linux -> (3.14 -> [RepoPackage],
3.13.7 -> [RepoPackage],
...),

gcc -> (4.8.2 -> [RepoPackage],
4.8.1 -> [RepoPackage],
...),

...)

Figure 3.6: A visualisation of a Metadata map.

To perform dependency resolution for a known package name, a valid version
to install must be automatically selected (e.g. the highest version), then its de-
pendencies and conflicts must be satisfied earlier in the schedule. Dependencies
are often visualised in a graph of the form given in Figure 3.7. As an example
from the figure, it would not be acceptable to install libncurses5 before in-
stalling libc-bin, since although there is no direct dependency joining the two,
libc6 would either not be installed yet, or may not have installed correctly.

The key algorithm, initially based upon Knuth’s “Algorithm T” mentioned
in Section 2.2, was converted into a recursive algorithm13 by the end due to
computation issues. Whereas Algorithm T requires a queue counting the number
of ‘depended on by’ relations, the recursive variant uses calls to travel down
towards the leaves, and returns to move back towards the root. By marking
each leaf when it has been placed into the schedule, two paths to the same
dependency14 do not cause it to be scheduled twice.

At a high-level, the function to produce a queue of actions in a valid order is:

• For each package provided as input:

– If the package is marked as handled or is already installed at an ac-
ceptable version, mark the package15 and do nothing for this iteration.

– For the set of dependent packages, call this function again.

– For every conflicting package, add its removal to the queue.

– Add this package’s install to the queue.

– Mark the package as already handled.
13Knuth references an unpublished chapter during his explanation of the algorithm, stating a

‘better’ recursive variant. I believe mine to be similar, since it almost matches the four recursive
algorithms mentioned by other sources.

14The figure shows libncurses5 and libtinfo5 both explicitly requiring libc6.
15In case it is already installed but not marked.

3.2. CLIENT 29

mtr-tiny

libncurses5

mtr

libc6

libtinfo5 libc-bin libgcc1

gcc47-base

Figure 3.7: A standard dependency tree. Arrows point in the direction of a
package that must be considered first. Dotted lines indicate deletion prerequisites,
solid lines installation prerequisites.

The greater complexity is in correctly implementing each of the above points,
such as identifying which version to install, identifying which dependencies are
permitted to be missing (if two dependencies have the same sequence number,
the first resolution may fail if the second succeeds), and on identifying if local
packages require alteration, upgrade, or already satisfy given conditions. In fact,
this complexity caused me to have to remove and rewrite the whole of dependency
resolution three times, possibly only due to being able to undo Git commits, and
already having defined the input and output formats such that no other code had
to change.

White box testing on the final incarnation, by deliberately crafting difficult
package metadata, showed two cases in which the function does not act exactly
as intended. The first is in the case where a package conflicts with one of its
dependencies, making it uninstallable. As an example, Figure 3.8.

a

b c

Figure 3.8: A problematic dependency tree.

Assuming b is already installed, the system will not check what b depends

30 CHAPTER 3. IMPLEMENTATION

upon. Therefore, a request to install a will attempt to delete c, then install a.
This will leave b, and a by extension, broken.

The solution to this is not to place dependency cycle-containing packages
into the repository. The filelist signer has the responsibility to check this at the
moment, but the real solution is to identify it automatically, as Debian EDOS [22]
does, and refuse to allow the transaction.

The second is the issue of tracking all packages that will also be uninstalled
on a given uninstallation request. Since the metadata only has relations in the
‘depends on’ direction, identifying ‘depended on by’ is hard. Either the repository
must perform the inversion, increasing download sizes and making delta merging
non-append-only16, or each client must compute this identical data, taking many
seconds. This remains an open investigation17, the temporary fix being to issue
API requests with the ‘and delete all dependencies’ flag. This is dangerous,
however, since GPM cannot fully state the result of the API request it is about
to make.

3.2.3 Installation and Removal

My decision to use the underlying features of the specialised package managers
allows installing and deleting to be incredibly simple. Rather than perform the
installation, the system saves the downloaded, validated-correct package to a
temporary directory and then invokes an APICaller, again using the Strategy
design pattern. It is analogous to the Interpreter on the server, except pro-
vides an interface between GPM and the relevant API. The client can then call
install(File f) for each package in turn to install them without user interac-
tion or ‘dependency not met’ errors.

The only required tests for this section were that the commands used in
the APICaller did perform the expected actions, generally very easy given the
manual pages for the package manager.

3.2.4 Integration Testing

To complete testing on the client, all the components were fitted together and a
series of random install requests and upgrade requests were made to demonstrate

16When adding a package, all its dependencies would have to have the package inserted in
their ‘depended on by’ collection.

17During testing, the idea to record the relation only for installed packages, and to add to
it only on new install requests, was conceived. This amortises the work, keeps only a subset
of the relation, and tracks partial upgrades properly. However, I neither had time to test this
properly nor create a proof of concept implementation.

3.2. CLIENT 31

the system’s functionality. In all cases, I first selected some packages to resolve,
checked the computed schedule, and compared it to that of debtree [31], an
application that draws Debian dependency trees. In all cases, this showed the
schedule to be safe and valid. I did find instances of failure. In some, where no
valid resolution existed, EDOS confirmed this. In some, the system overflowed
the stack due to cyclic dependencies, which EDOS also mentioned. I believe both
of these failures to be justified as being the fault of the user who permitted that
transaction.

3.2.5 Download Nuances

Where authentication occurs through signatures, a Denial of Service is possible.
This is because signature verification cannot occur until the download is complete,
not even to fail early. Supposing a victim automates updating, a man in the
middle is capable of returning a bad file to the client, with no intention of trying
to trick the package manager into believing it is correct. Instead, the attacker
seeks to provide the largest possible file, forcing an excessive download. If on the
LAN, the attacker can attempt to exhaust the filesystem or RAM. If the attacker
is remote and serving this file to a user with a bandwidth cap, the victim could
end up being billed by the ISP or disconnected18.

One possible solution would be to arbitrarily impose limits on the sizes of the
files, but this is likely to become obstructive. Limits would have to be incremented
gradually as files grew, and certain limitations would be entirely ineffective. A
limit of 10 GB per package to permit some full-sized games would still allow 10
KB shell scripts to be grown to 100,000 times their original size.

Instead, the solution I provided was to arbitrarily pick a 1MB limit for the
filelist. This is because it is only intended to hold a couple of entries of an enum
indicating a filetype, a hash, and a length. Then, every stage states the length
of the next stage. The file listing states the length of the key list and of the
metadata file. The metadata file specifies the length of the package. Then, if a
file that is overly long is fetched, the download is aborted at the expected length,
rather than when the file finishes being sent.

18Queens’ College would bill £100 if my 1 TB drive was exhausted by this attack. The same
attack on BT’s uncapped fibre package would cause overages of £1,060.

32 CHAPTER 3. IMPLEMENTATION

Chapter 4

Evaluation

In this chapter, I aim to provide a series of investigations into the resultant be-
haviour of my package manager, and judge to what level it is suitable as an
alternative to those already established in the field. This comprises both qual-
itative analysis of its feature set and quantitative benchmarking results, as was
given in my test plan in Section 2.9.

4.1 Overall Security

The initial purpose of this package manager was to mitigate key compromise.
To this end, it is important to confirm exactly what benefits the implemented
protocol has when compared to existing package managers.

4.1.1 Comparative Amount of Communication Security

Firstly, I seek to identify how much of the communication between GPM and the
repository is signed and compare this to other package managers.

This is done by providing Table 2 from Samuel et al. [33] as Table 4.1, con-
taining entries for whether certain phases of package managers’ communication is
authenticated. At the end, I have inserted a line showing GPM’s implementation.

In the table, downloading over SSL implies end-to-end encryption. However, a
secure link to a malicious mirror is of no benefit. The standard Java libraries allow
GPM to perform SSL connections, but in no way do I consider it an advertised
security feature.

This figure demonstrates, at a high level, that I have attained more security
during communication than any other package manager surveyed by Samuel et
al. I believe this to be a very positive result. However, it is important to analyse
the purpose of the security, so I do so in the next section.

33

34 CHAPTER 4. EVALUATION

Name Package Metadata File List Over SSL?
yum (Fedora) Signed Yes
yum (Red Hat) Signed Signed Yes
apt (Ubuntu) Signed Signed

yast (OpenSuSE) Signed Yes
slackpkg (Slackware) Signed
pacman (Arch Linux) Signed Optional
Sparkle (OS X apps) Optional Optional

Adobe AIR app updater Yes Yes Yes
GPM Yes Yes Yes Optional

Table 4.1: The signedness of each stage of communication for many popular
package managers.

4.1.2 Resilience to Key Compromise

As mentioned in the previous section, a more pertinent question is “To what
level does GPM’s signing prevent against attacks when some subset of keys have
been compromised?” To answer this, I am replicating a reformatted Table 5 from
Samuel et al.

Roles Fake Old/Extra Freeze Until?
compromised package? packages? updates?

None No No Yes a

File List
No No Yes b

File List + Package
File List + Metadata No Yes Yes c

File List + Package + Metadata Yes Yes Yes
Root Yes Yes Yes d

Metadata
No No No N/APackage

Metadata + Package

aUntil the signature on the file listing expires, usually set to the longest period between two
consecutive transactions. May be 24 or 48 hours, not enough time for a vulnerability to be
found in a package.

bUntil the stolen key expires, the signature on the metadata file expires, the signature on
the trusted keyring expires, or the root key expires.

cUntil a stolen key expires or the root key expires.
dUntil the root key expires (usually set to never expire for a given OS release, a new release

using a new repository and having a new root key).

4.2. PERFORMANCE TESTING 35

For each instance of ‘No,’ this means that not only will the attack not cause
the package manager to exhibit unwanted behaviour, but it will also be detected.

In the case where a stolen key expires, the new exposure to attack is given by
the row containing any still-compromised keys. In the case of comparing another
package manager that does not secure a given stage, such as one from Section
4.1.1, simply assume all keys of that class are compromised, and that they have
no expiry date.

As a result of its protocol, GPM therefore requires a filelist key theft for
extended periods of update freezing, a filelist and metadata key theft for metadata
modification, and one of each key theft for package replacement.

4.2 Performance testing

To analyse the performance of the system, separate evaluations of the server and
the client are made in the following subsections. This is due to the nature of a
package manager; the server and client operations do not occur sequentially, nor
do they have the same set of timing requirements.

4.2.1 Server

The features required of the server relate to the speed of import. Using the full
mirror of Debian packages downloaded at the start of the project, I performed
a test that my implementation was able to import every package, and recorded
the import times for each package. The results of this also produced a GPM
repository usable for the client testing components.

4.2.1.1 Acceptable Daily Rate

The first important property the server must have is to be able to import packages
faster than they are likely to be uploaded.

To test this, I first had to find the daily rate of package uploads, a number
which varies depending on how release schedules of different projects happen to
coincide. Peaks tend to occur on mass-rebuilds, where packages require recompi-
lation under a new library or need a ‘soname bump’1.

Debian provides a list of the last seven days of package updates [20]. Over the
month of December, I counted the number of new packages that entered their

1Where a dynamically loadable library changes its name, such as libreadline.so.5 to
libreadline.so.6, all dependant packages will attempt to read a non-existent file if they are
not recompiled.

36 CHAPTER 4. EVALUATION

unstable repository using this page, and got 983. This is only 32 per day, on
average. However, on the day gcc was recompiled, 94 packages were admitted.
Ambitiously, if a day’s imports are targeted to take less than ten minutes, they
must complete in 10 minutes

94
= 6.38 seconds. However, this must be halved, since

abstraction occurs twice, once for file creation and once for staging.
Figures 4.1 and 4.2 show the concentration of import speeds and the outliers

for the mass-abstraction, a test that lasted 199234 seconds (an average of 1.28
seconds per package for the 155065 packages imported).

Since the graphs show that not only did the average package import in far
under the required time, but 98.45% of all packages did so, I conclude that the
import occurs at a satisfactory rate for even large distributions handling many
package uploads per day.

The three packages that were the slowest had 211 (libmono-cil-dev), 87 (openoffice-
core) and 117 (ia32-libs) dependencies. I believe the increased amount of parsing
and regular expressions used to extract these dependencies is likely what caused
the slower imports, up to 21.9 seconds in the worst case.

However, I recognise that not every package should be considered equal for
importing importance, and therefore it should instead be verified that packages
relevant to the majority are fast to upload and distribute.

4.2.1.2 Most Popular Packages

To resolve the issue recognised as the end of the previous section, I formed a plan
to identify the most important of all of the packages imported in the batch run
to more accurately understand GPM’s speed.

In order to determine which packages classify as ‘important,’ I used the Debian
Popularity Contest [1], ‘popcon’. This provides lists as to the most used, the most
often upgraded, and the most installed packages. These help identify packages
that people rely on and enjoy having up to date, and those that are installed but
forgotten, probably only required as dependencies of the base install rather than
user invoked.

Figure 4.3 shows the results of importing the top 500 packages in each section.
In each case, only the very uppermost result exceeds the 3.2 second target, 499
of the 500 importing in the ambitious target time. I believe this to be very
promising, and show that users will be satisfied with the distribution speed for
uploaded packages they are interested in.

4.2. PERFORMANCE TESTING 37

0.
5
–
0.
6

0.
6
–
0.
7

0.
7
–
0.
8

0.
8
–
0.
9

0.
9
–
1

1
–
1.
1

1.
1
–
1.
2

1.
2
–
1.
3

1.
3
–
1.
4

1.
4
–
1.
5

1.
5
–
1.
6

1.
6
–
1.
7

1.
7
–
1.
8

1.
8
–
1.
9

1.
9
–
2

2
–
2.
1

2.
1
–
2.
2

2.
2
–
2.
3

2.
3
–
2.
4

2.
4
–
2.
5

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

seconds

pa
ck
ag

es

Figure 4.1: A visualisation of the peak of the import times, and the narrow spread
of results.

38 CHAPTER 4. EVALUATION

0.
5
–
1

1
–
1.
5

1.
5
–
2

2
–
2.
5

2.
5
–
3

3
–
3.
5

3.
5
–
4

4
–
4.
5

4.
5
–
5

5
–
5.
5

5.
5
–
6

6
–
6.
5

6.
5
–
7

7
–
7.
5

7.
5
–
8

8
–
8.
5

8.
5
–
9

9
–
9.
5

9.
5
–
10

101

102

103

104

105

seconds

pa
ck
ag

es

Figure 4.2: A log graph of results for the mass-import.

4.2. PERFORMANCE TESTING 39

0 1 2 3

Most upgraded

Most used

Most installed

seconds

Figure 4.3: A box plot showing the distribution of import times for packages
deemed ‘relevant’ to users based on Debian popcon.

4.2.1.3 Ease of Implementation

Finally, it is necessary to check that distributions would accept writing the num-
ber of lines of code required to implement their package format in GPM, rather
than rewriting their own codebase to provide the same features.

Depending on the distribution’s existing security, different levels of work would
be needed. At the very least, extra signatures, plus any code to produce a
chain from these multiple signatures. For systems signing only one phase, their
implementation may be even more naïve, missing the concept of roles entirely.

Therefore, in order to make GPM a realistic choice, the amount of code re-
quired to specialise it must be on the order of hundreds of lines, not thousands.
As such, I sought to write a second Interpreter class, capable of abstracting
Arch Linux’s ‘.pkg.tar.xz’ package format.

The entirety of the Importer_Arch file is 92 lines of code (including comments
and blank lines for formatting), none more complex than use of a decompression
library and a set of regular expressions. The abstraction of my laptop’s package
cache, containing a representative sample of packages that a general system runs,
was 55.08 seconds for 3744 packages, or an average of 14.7 milliseconds per pack-
age. This is more than likely due to the far simpler to parse packaging format2,
and I believe these results to be more than satisfactory.

2Arch Linux uses a less nested archive structure which makes it faster to extract, and uses
a less complex metadata format to parse through regular expressions.

40 CHAPTER 4. EVALUATION

4.2.2 Client

Unlike the server, where delays are acceptable for batch importing, the client
has a far greater reliance on speedy responses, since a user will be looking at
the screen and expecting instantaneous output. Unlike servers, client machines
are also often far more bandwidth constrained. The tests in this section seek to
identify if the alternative protocol causes unacceptable drawbacks for users.

4.2.2.1 Dependency Resolution

The main algorithm the client uses is dependency resolution. Therefore, it is
important that this part performs well; it is the only intensive computation re-
quired. The aim is to test that a user will not become annoyed by the algorithm’s
execution time, particularly as the algorithm cannot display an accurate progress
bar3.

Attempting to measure the time dependency resolution takes as part of an-
other package manager is near-impossible, since the phases are not clearly sep-
arated. Therefore, I had to use the rather informal determination that, at rare
times on both my Arch Linux laptop and my Debian webserver, I have experi-
enced dependency resolution times of around six or seven seconds, and considered
them onerous. Therefore, dependency resolution of GPM must be less.

To test resolution times, I directly called the resolution function with the top
1750 packages installed on Debian from popcon, since these packages constitute
those most users see over a general lifetime of use of their system, and therefore
will want to be fast. Every time, GPM was told no packages were installed on
the system, so as to perform the maximum traversal possible.

Figure 4.4 shows the single 1750 package test. I found the results of it fasci-
nating; the packages had partitioned themselves into two distinct sets, although
I could not find an exact formula to separate them. Regardless, I have added two
regression lines for the datapoints corresponding to shallow, broad trees (faster,
traversal requires mainly iteration) and deep, narrow trees (slower, traversal re-
quires more recursion)4 which appear to fit the data particularly well.

Extrapolating both lines, packages of 2098 ‘shallow’ dependencies and 590
‘deep’ dependencies would be installable in five seconds, numbers considerably

3If the root has two dependencies, one with one dependency, one with one hundred, the
best approximation possible would be that completing one of these dependencies causes 50%
progress, which is false. Until the package manager inspects the child nodes, it does not know
how many grandchildren nodes there will be, and thus how much work there will be to perform.

4The fifty packages with highest and lowest average branching factor for their subtrees were
used to generate the regression lines.

4.2. PERFORMANCE TESTING 41

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

50

100

150

200

250

300

seconds

D
ep

en
de
nc
ie
s
in

P
ac
ka
ge

Figure 4.4: Dependency resolution times for each of the top 1750 installed Debian
packages.

42 CHAPTER 4. EVALUATION

greater than for any package I’ve encountered. This suggests the client to far
exceed dependency resolution speed expectations, let alone requirements. How-
ever, it is also important to note that based on a user’s bandwidth, this resolution
period may not be the longest component of the overall install.

4.2.2.2 Comparative Filesizes

As the previous section hinted, a user on a slow broadband connection may not be
willing to accept excessive filesize overheads for security, download times of which
may be far greater than that of even the most inefficient dependency resolution
algorithm. The downloads Debian provide are approximately 10 megabytes, an
operation that already takes 10 MB

3.6 mbps = 22.2 seconds at the global average con-
nection speed [4], as an example. Therefore, the download time needs to barely
increase under GPM, perhaps a couple of seconds at most.

For this, I am using GPM’s metadata for the full import of all packages as
produced during server benchmarking. This is being compared to the metadata
files on the repository from which I fetched those packages. However, since GPM
misses some of the features apt has, such as the ability to reference multiple
metadata files in the filelist5, or to hold information about a package’s descrip-
tion, the ‘apt (stripped)’ column accurately represents the amount of these files
that contains information that GPM also represents. Since apt’s metadata is
transmitted compressed, I have also calculated the filesize if GPM’s metadata
object were also compressed in transit with gzip.

apt apt (stripped) GPM GPM w/ compression
File List 154 kB 1.2kB 850B
Metadata 6.3 MB 5.7 MB 21 MB 7.1 MB
Packages Identical

Although nearly 33% of the apt metadata is omitted in the stripped version,
it is only data that compresses well like descriptions in plain English. When
recompressed, this is only an 11% decrease.

In summary, there is a filesize overhead associated with this new system.
If GPM has no compression, it causes 34 seconds of additional downloading.
If GPM files are compressed for transit, it is 3.1 seconds extra. I feel three
seconds is defensible, however the file must be extracted on the local machine

5Debian has thirteen architecture ports, and multiple metadata listings for each, making a
1600-line file listing. GPM’s, by comparison, has two entries.

4.3. TESTING SUMMARY 43

and stored, and 20 MB is a significant increase from 6.3 MB. Using a more
succinct serialized form than Java’s, such as those provided by the Kryo [37]
libraries, would hopefully fix this issue. Others’ benchmarks indicate that the
serialized files Kryo provides are only about 25% of that of Java natively [34].

4.3 Testing Summary

In the previous sections, I have completed an extensive evaluation of GPM.
Firstly, I showed GPM to be more secure, and to be more resilient to key theft.
Then, I performed benchmarks over the server and client. I showed that the server
would be unlikely to ever take over ten minutes of processing time to import an
entire day’s workload. Finally, I showed that the client is fast enough for users,
with dependency resolution of the majority of tested packages not exceeding one
second, and download times potentially only about 10% slower if compression is
implemented. On all fronts, GPM has performed above any expectations I had
when producing the software, and I am proud of the data shown.

44 CHAPTER 4. EVALUATION

Chapter 5

Conclusion

In summary, I have completed my project to produce a more secure package man-
ager. The result, GPM, uses a modified form of the TUF and Thandy protocols
to sign the three stages of communication with a repository; the file listing, the
metadata, and the package itself. Unlike other package managers, GPM is not
constrained to a given package format, instead using the Strategy design pattern
to import and handle packages of multiple different specifications with minimal
code writing. The system is versatile, capable of being altered to support different
hashing and signing algorithms to ensure it stays secure over time as cryptanalysis
shows weaknesses in existing work.

5.1 Completion Of Requirements

Section 2.8 contains a series of initial requirements that were identified from the
investigation and preparation. Here, I seek to show that I have met them.

1. The package manager must be capable of installing and upgrading software
packages without ever altering their internal representation: This is shown
from use of an Interpreter in Section 3.1.3 to read data from the package,
rather than manipulating its contents.

2. The package manager must be capable of throwing errors in cases where any
of the communication has been manipulated if no keys have been compro-
mised: This is shown in Section 4.1.2, where attacks are explicitly stopped
by the presence of certain keys, since the manipulation is then visible. In
all of these cases, the package manager halts immediately for safety.

3. In the case of key compromise, the package manager must be at least as
capable of identifying attacks as existing package managers: Section 4.1.1

45

46 CHAPTER 5. CONCLUSION

and 4.1.2 show exactly how secure GPM is. GPM uses more keys at more
stages than all other surveyed systems, and is shown to be at least as
resilient to attack for exactly this reason.

4. The package manager must have the core of its code written independent
of the input format: The only specialised components are an Interpreter
on the server, detailed in Section 3.1.3, and an APICaller on the client,
detailed in section 3.2.3.

5. The transformation must take less time to run on a package than would
cause a backlog under standard import rates for distributions: This was
shown during the server benchmarking in Section 4.2.1.1, where even un-
der extreme circumstances, a day of imports could occur in 10 minutes of
processing time.

6. The language of choice must not cause an excessive amount of otherwise
unneeded packages: This one was provided by using Java. Java headless1

is three Debian packages2 with an install footprint under 30 MB. Libraries
in Java are stored in the JAR archive rather than as system packages like
Perl or Python, avoiding a situation whereby upgrading these libraries for
other applications’ sake may simultaneously break the package manager if
it is not fully tested first.

5.2 Areas Needing Improvement

In order to keep the project running to schedule, edge cases and inoptimal im-
plementations were overlooked in favour of larger amounts of progress3. At this
point, I believe GPM has shown itself to meet its aims, however I do not believe
that it is releaseable to the community for use. Given more time, the following
areas require alteration:

• The inefficiency of serialization, in Section 4.2.2.2, demonstrates the great-
est barrier to adoption. At the very least, it is clear metadata must be
compressed, but altering the serialized format altogether using Kryo may
also be required.

1A release of Java created to only provide command-line interaction, no GUI components
are included.

2jre-headless, jre-headless-lib and ca-certificates-java
3Dependency resolution overran by approximately two weeks before I had to accept the

drawbacks of the provided implementation.

5.3. FUTURE WORK 47

• The lack of tree inversion, in Section 3.2.2, means users are not necessarily
sure what side effects a deletion will have.

• Partial upgrades, where some packages on a system are updated and some
are left at their old version, have explicitly not been included because not all
distributions endorse them as an update method [28]. However, since some
distributions allow it, I should add a boolean to APICaller and implement
it only to be available if true is returned.

• The project proposal describes implementations for Debian and Red Hat
packages, however this was altered to Debian and Arch Linux after a few
weeks of investigation. The control files of Debian and Arch Linux packages
are similar and straightforward to locate and parse. By comparison, the
RPM metadata is held in a C struct prepended to the archive, in network
byte order, not necessarily host byte order. The metadata itself is held as an
array of dependencies, array of comparators and array of versions, where
identical indices in each array indicate portions of the same dependency.
The only possible way to parse this would be to pass the data over the
JNI, read it in C, then pass the result back. I felt this work would take too
long for the week allocated to creating Interpreters. However, I feel that
having an Interpreter_RPM before release is necessary.

5.3 Future Work

Other than fixes, looking forward on the future of GPM, I believe there are three
areas for further research and implementation.

I believe that, in its current state, the client’s interface is not ready. Although
a seasoned command line user may be able to operate it, they are currently unable
to get an increased verbosity mode, a quiet mode, and other expected features.
Furthermore, a new Linux user would have significant difficulty using it. I believe
the solution to this is to provide Gnome PackageKit [12] bindings. PackageKit
provides an API to allow any GUI to be attached to any compatible backend
consistently. This would then allow a third-party package manager GUI to sit
over the top, potentially the exact same user interface as for the package manager
GPM replaces in an upgrade scenario. This would give a seamless transition and
not cause any learning curve for users.

Secondly, I believe a system should be made to prompt signers more effectively
as to what needs to be signed. An application could scour the interim directory,
check which files do not have signatures in incoming, and present to packagers

48 CHAPTER 5. CONCLUSION

only the phases that they have keys they can sign, all metadata about that
package, and allow them to download and inspect the contents. Maintainers
could then one-click ‘sign and upload’ their support.

Finally, I believe investigation could be done into applying GPM over the top
of an existing repository structure. This would require additional Interpreter
function calls to identify where a package should be located in a repository, since
it would have to follow the conventions of the package manager it is attempting
to coexist with. However, the result would then be one file structure from which
an old package manager could update, since it would not know to look for the
new files, and one from which this new package manager could also run, since
it would just also check those additional signatures. This would avoid storing
the packages twice in two different repositories on the same host, which may
otherwise duplicate required storage space during a transition.

5.4 Closing Thoughts

I believe I have demonstrated that TUF, and by extension GPM, are viable for
real world use. The protocol itself is more secure than those already used, and
GPM implements it with the potential for others to develop upon the foundations
I have laid. GPM fills a real need for secure software updates on Linux machines,
from stable servers to personal computers in untrusted networks, and does so with
a core design that can be contributed to by all those who write Interpreters,
gradually forming an increasingly stable and trusted code base. It also encourages
the creation of new package formats, using only a few lines to specialise GPM
for it. I am incredibly enthusiastic about the potential of this, and intend to
remove the ‘private’ restriction from my GitHub repository and open-source the
code under a permissive license after the academic year is over so any interested
parties can contribute and assist.

Bibliography

[1] Bill Allombert. Debian Popularity Contest. http://popcon.debian.org.

[2] Edward C. Bailey. Maximum RPM: Taking the Red Hat Package Manager
to the Limit, Appendix A: Format of the RPM File. http://www.rpm.org/
max-rpm/s1-rpm-file-format-rpm-file-format.html.

[3] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid.
Recommendation for Key Management – Part 1: General (Revision 3). Tech-
nical Report 800-57, Computer Security Division, Information Technology
Laboratory, National Institute of Standards and Technology, 2012.

[4] David Belson, editor. The State Of The Internet, Volume 6. Number 3.
Akamai Technologies, 2013.

[5] Ferry Boender. Dependency resolving algorithm. http://www.
electricmonk.nl/log/2008/08/07/dependency-resolving-algorithm/.

[6] Justin Cappos, Justin Samuel, Scott Baker, and John H. Hartman.
Attacks on Package Managers. http://www.cs.arizona.edu/stork/
packagemanagersecurity/.

[7] Justin Cappos, Justin Samuel, Scott Baker, and John H. Hartman. Other
Attacks. http://www.cs.arizona.edu/stork/packagemanagersecurity/
otherattacks.html.

[8] Justin Cappos, Justin Samuel, Scott Baker, and John H. Hartman. Stork
Package Manager. http://www.cs.arizona.edu/stork/.

[9] Justin Cappos, Justin Samuel, Scott Baker, and John H. Hartman. A Look
in the Mirror: Attacks on Package Managers. In Proceedings of the 15th
ACM Conference on Computer and Communications Security, CCS ’08,
pages 565–574, New York, NY, USA, 2008. ACM.

49

http://popcon.debian.org
http://www.rpm.org/max-rpm/s1-rpm-file-format-rpm-file-format.html
http://www.rpm.org/max-rpm/s1-rpm-file-format-rpm-file-format.html
http://www.electricmonk.nl/log/2008/08/07/dependency-resolving-algorithm/
http://www.electricmonk.nl/log/2008/08/07/dependency-resolving-algorithm/
http://www.cs.arizona.edu/stork/packagemanagersecurity/
http://www.cs.arizona.edu/stork/packagemanagersecurity/
http://www.cs.arizona.edu/stork/packagemanagersecurity/otherattacks.html
http://www.cs.arizona.edu/stork/packagemanagersecurity/otherattacks.html
http://www.cs.arizona.edu/stork/

50 BIBLIOGRAPHY

[10] Justin Cappos, Justin Samuel, Scott Baker, and John H. Hartman. Pack-
age Management Security. Technical Report 02, Department of Computer
Science, University of Arizona, 2008.

[11] Timothy G. Griffin. Databases, pages 7, 11, 96. Lecture notes, 2013.

[12] Richard Hughes. What is PackageKit? http://www.freedesktop.org/
software/PackageKit/pk-intro.html.

[13] IgnorantGuru. ArchâĂŹs Dirty Little Not-So-Secret. http://igurublog.
wordpress.com/2011/02/19/archs-dirty-little-notso-secret/.
Posted 2011-02-19.

[14] Ian Jackson, Christian Schwarz, and David A. Morris. Debian Policy Manual
v3.9.5.0, pages 9–14, 23–33, 41–48, 99–100. The Debian Policy Group, 2013.

[15] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Com-
puter Programming, pages 261–271. Addison-Wesley, 3rd edition, 2000.

[16] Markus Kuhn. Security I, pages 75–81. Lecture notes, 2013.

[17] Markus Kuhn. Security II, pages 59, 85–87, 89. Lecture notes, 2014.

[18] Ian Leslie. Operating Systems I, pages 121–127, 132–142. Lecture notes,
2011.

[19] Eric Lippert. I’m putting on my top hat, tying up my white tie, brushing
out my tails – in that order. http://blogs.msdn.com/b/ericlippert/
archive/2004/03/16/90851.aspx.

[20] Debian-WWW maintainers. New Packages in “sid”. https://packages.
debian.org/sid/newpkg.

[21] Fabio Mancinelli, Jaap Boender, Roberto di Cosmo, Jerome Vouillon, Berke
Durak, Xavier Leroy, and Ralf Treinen. Managing the Complexity of Large
Free and Open Source Package-Based Software Distributions. In Proceedings
of the 21st IEEE/ACM International Conference on Automated Software
Engineering, ASE ’06, pages 199–208, Washington, DC, USA, 2006. IEEE
Computer Society.

[22] Fabio Mancinelli, Ralf Treinen, and Stefano Zacchiroli. Debian Quality As-
surance. http://edos.debian.net/.

http://www.freedesktop.org/software/PackageKit/pk-intro.html
http://www.freedesktop.org/software/PackageKit/pk-intro.html
http://igurublog.wordpress.com/2011/02/19/archs-dirty-little-notso-secret/
http://igurublog.wordpress.com/2011/02/19/archs-dirty-little-notso-secret/
http://blogs.msdn.com/b/ericlippert/archive/2004/03/16/90851.aspx
http://blogs.msdn.com/b/ericlippert/archive/2004/03/16/90851.aspx
https://packages.debian.org/sid/newpkg
https://packages.debian.org/sid/newpkg
http://edos.debian.net/

BIBLIOGRAPHY 51

[23] J.P. Marques-Silva and K.A. Sakallah. GRASP: a search algorithm for
propositional satisfiability. Computers, IEEE Transactions on, 48(5):506–
521, 1999.

[24] Nick Mathewson. Thandy: Automatic updates for Tor bundles. https:
//git.torproject.org/checkout/thandy/specs/thandy-spec.txt.

[25] Ciaran McCreesh, Petteri Räty, and Ulrich Müller. Gentoo Development
Guide: Ebuild Writing. http://devmanual.gentoo.org/ebuild-writing/
index.html.

[26] Allan McRae. Pacman Package Signing âĂŞ 4: Arch Linux. http:
//allanmcrae.com/2011/12/pacman-package-signing-4-arch-linux/.
Posted 2011-12-17.

[27] Allan McRae, Dan McGee, Dave Reisner, Judd Vinet, Aurelien Foret, Aaron
Griffin, Xavier Chantry, and Nagy Gabor. Pacman Manual, PKGBUILD(5).
man PKGBUILD on an Arch Linux system, or https://www.archlinux.org/
pacman/PKGBUILD.5.html.

[28] Daniel Micay. Arch Linux Wiki: Pacman - Partial Upgrades Are Not
Supported. https://wiki.archlinux.org/index.php/pacman#Partial_
upgrades_are_unsupported.

[29] Alan Mycroft. Optimising Compilers, pages 36–37. Lecture notes, 2013.

[30] Nicole Perlroth. Government Announces Steps to Restore Confidence on
Encryption Standards. http://bits.blogs.nytimes.com/2013/09/10/
government-announces-steps-to-restore-confidence-on-encryption-standards/.
Posted 2013-09-10.

[31] Frans Pop. debtree – package dependency graphs on steroids. http://
collab-maint.alioth.debian.org/debtree/.

[32] Andrew Rice and Alastair Beresford. Further Java Workbook 2, pages 1–3.
Lecture notes, 2012.

[33] Justin Samuel, Nick Mathewson, Justin Cappos, and Roger Dingledine. Sur-
vivable Key Compromise in Software Update Systems. In Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS ’10,
pages 61–72, New York, NY, USA, 2010. ACM.

[34] Eishay Smith. JVM Serializer Benchmarking.
https://code.google.com/p/thrift-protobuf-compare/wiki/Benchmarking.

https://git.torproject.org/checkout/thandy/specs/thandy-spec.txt
https://git.torproject.org/checkout/thandy/specs/thandy-spec.txt
http://devmanual.gentoo.org/ebuild-writing/index.html
http://devmanual.gentoo.org/ebuild-writing/index.html
http://allanmcrae.com/2011/12/pacman-package-signing-4-arch-linux/
http://allanmcrae.com/2011/12/pacman-package-signing-4-arch-linux/
https://www.archlinux.org/pacman/PKGBUILD.5.html
https://www.archlinux.org/pacman/PKGBUILD.5.html
https://wiki.archlinux.org/index.php/pacman#Partial_upgrades_are_unsupported
https://wiki.archlinux.org/index.php/pacman#Partial_upgrades_are_unsupported
http://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
http://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
http://collab-maint.alioth.debian.org/debtree/
http://collab-maint.alioth.debian.org/debtree/

52 BIBLIOGRAPHY

[35] Frank Stajano. Algorithms II, pages 7–39, 43–45, 45–46, 57–58. Lecture
notes, 2012.

[36] Frank Stajano. Security II, pages 11, 39. Lecture notes, 2014.

[37] Nathan Sweet. Kryo. https://github.com/EsotericSoftware/kryo.

[38] Robert Watson. Concurrent Systems, pages 3.16–22, 3.29–4.04, 4.16–4.17,
4.25. Lecture notes, 2013.

[39] Nathan Willis. Arch Linux and (the lack of) package signing. http://lwn.
net/Articles/434990/. Posted 2011-03-23.

[40] Tim Wood. JewelCli. http://jewelcli.lexicalscope.com/.

https://github.com/EsotericSoftware/kryo
http://lwn.net/Articles/434990/
http://lwn.net/Articles/434990/
http://jewelcli.lexicalscope.com/

Appendix A

Excerpt of Debian Policy Manual
Chapter 5

When comparing two version numbers, first the epoch of each are compared,
then the upstream_version if epoch is equal, and then debian_revision if up-
stream_version is also equal. epoch is compared numerically. The upstream_version
and debian_revision parts are compared by the package management system us-
ing the following algorithm:

The strings are compared from left to right.
First the initial part of each string consisting entirely of non-digit characters is

determined. These two parts (one of which may be empty) are compared lexically.
If a difference is found it is returned. The lexical comparison is a comparison of
ASCII values modified so that all the letters sort earlier than all the non-letters
and so that a tilde sorts before anything, even the end of a part. For example,
the following parts are in sorted order from earliest to latest: ~~, ~~a, ~, the
empty part, a.

Then the initial part of the remainder of each string which consists entirely
of digit characters is determined. The numerical values of these two parts are
compared, and any difference found is returned as the result of the comparison.
For these purposes an empty string (which can only occur at the end of one or
both version strings being compared) counts as zero.

These two steps (comparing and removing initial non-digit strings and initial
digit strings) are repeated until a difference is found or both strings are exhausted.

Note that the purpose of epochs is to allow us to leave behind mistakes in
version numbering, and to cope with situations where the version numbering
scheme changes. It is not intended to cope with version numbers containing
strings of letters which the package management system cannot interpret (such
as ALPHA or pre-), or with silly orderings.

53

Appendix B

Excerpt of Portage Documentation

When implementing a database backend for portage, the versions of packages
need to be directly comparable. An integer sized 64 or 128 bit is the way to
go. This page describes a scheme to encode the original version strings into
compacted integers.

The format of version strings used in ebuilds can be categorized as:

version ::= <basic> <suffix>
basic ::= <number> {’.’ <number>} [char]
suffix ::= [’_’ <symbol> [number]] [’-r’ <number>]
number ::= an arbitary non-negative number
symbol ::= one of "alpha", "beta", "rc", "pre", "p"
char ::= ’a’ to ’z’

NOTE: {’a’} means ’a’ can appear none or arbitary times.

Provided their LSBs (least significant bits) are aligned, they are still compa-
rable. So we can align the LSB of numbers to some fixed positions. If we use 4
bits per number we can get:

1.0 => 0001 0000 0000 0000
1.0.0 => 0001 0000 0000 0000
1.1 => 0001 0001 0000 0000
3.4.1.10 => 0011 0100 0001 1010

This method has a big limitation that the size of an integer and the number
of integers are fixed. To overcome these limitations, we can prepend a length
marker before the number and use the following encoding:

54

55

0xx for 0-3
1xxxxx for 4-31

Losing one bit for a number, now we can encode more complex versions:

1.0 => 001 000 => 0010 0000 0000 0000
1.0.0 => 001 000 000 => 0010 0000 0000 0000
1.1 => 001 001 => 0010 0100 0000 0000
1.3 => 001 011 => 0010 1100 0000 0000
1.4 => 001 100100 => 0011 0010 0000 0000
2.6.20 => 010 100110 110100 => 0101 0011 0110 1000
3.0 => 001 000 => 0010 0000 0000 0000
3.1 => 001 001 => 0010 0100 0000 0000
3.2.3.3 => 011 010 011 011 => 0110 1001 1011 0000
3.2.3.3.1 => 011 010 011 011 001 => 0110 1001 1011 0010

The point here is to use Huffman coding. We just have to make sure the
length markers are comparable. In other words, markers for shorter length must
be less than markers for longer length, when aligned to the MSB. Also, no length
marker can be a prefix of another, or we can’t distinguish them.

For an arbitary version string, we just encode each part of the version and
concatenate them from MSB to LSB using:

01000xxxxx a-z
01xxx except 01000 0-6 (small version numbers, 0 -> 01001, etc.)
100xxxxxx 7-70
101xxxxxxxxxxxx 71-4166
110{27x} 4167-134221894, for DDMMYYYY
1110{40x} 134221895-1099645849670, for timestamps
1111{48x} 1099645849671-282574622560326, for anything else

As 0-6 are already encoded as 01xxx, 100000000-100000100 are illegal and so
100000000 encodes 7 allowing an upper bound 6 greater than usual (64+6=70).
The same trick applies in every following range.

Suffixes are also given their own encoding. For example, ‘alpha’, ‘beta’, ‘pre’
and ‘rc’ should be considered to be before the real version numbers, and therefore
their value must be less than the usual version number.

000 prerelease
001 general release

56 APPENDIX B. EXCERPT OF PORTAGE DOCUMENTATION

Then if there are suffixes, we encode the suffixes and append the sequences
according to this table:

0 + NUM ebuild has a revision number as a variable size integer.
10xxx ebuild has a suffix but no revision.
11xxx + NUM ebuild has both a suffix and a revision.

The suffix is then from:

000 _alpha
001 _beta
010 _rc
011 _pre

This produces a final value that can be compared from MSB to LSB to version
check the ebuild.

Appendix C

Correct attempt to install ‘kernel’
and ‘bc’

root@archiso ~ # pacman -S linux
resolving dependencies...
looking for inter-conflicts...

Packages (1): linux-3.10.10-1

Total Download Size: 52.84 MiB
Total Installed Size: 69.47 MiB
Net Upgrade Size: 4.49 MiB

:: Proceed with installation? [Y/n]

root@archiso ~ # pacman -S bc
resolving dependencies...
looking for inter-conflicts...

Packages (1): bc-1.06-8

Total Download Size: 0.08 MiB
Total Installed Size: 0.18 MiB

:: Proceed with installation? [Y/n]

57

Appendix D

Hijacked attempt to install ‘kernel’
and ‘bc’

root@archiso ~ # pacman -S linux
warning: downgrading package linux (3.10.9-1 => 2.6.32.61-1)
resolving dependencies...
looking for inter-conflicts...

Packages (1): linux-2.6.32.61-1

Total Download Size: 49.87 MiB
Total Installed Size: 68.93 MiB
Net Upgrade Size: 3.95 MiB

:: Proceed with installation? [Y/n]

If the package had not already been installed at a greater version, the warning
on the first line would not have been generated since the package manager would
have no means by which to notice this inconsistency.

root@archiso ~ # pacman -S bc
resolving dependencies...
:: There are 3 providers available for libgl:
:: Repository extra

1) mesa-libgl 2) nvidia-304xx-utils 3) nvidia-libgl

Enter a number (default=1): 1
looking for inter-conflicts...

58

59

Packages (167): aalib-1.4rc5-10 alsa-lib-1.0.27.2-1 ...
cdparanoia-10.2-5 celt-0.11.3-2 ...
...
...
sqlite-3.8.2-1 taglib-1.9.1-1 ...
xproto-7.0.25-1 xvidcore-1.3.2-3 bc-1.06-8

Total Download Size: 73.43 MiB
Total Installed Size: 372.13 MiB

:: Proceed with installation? [Y/n]

If I had not chosen a package which depended on a virtual package, one with
multiple options for what can provide it (libgl), then the user would not have
had to type a number.

Appendix E

Excerpts from Interpreter_DEB

Extracting metadata into a string named ‘result’ by unwrapping the ‘.ar’ archive,
then the ‘.gz’ archive, then the ‘.tar’ archive:

String result = null;
RepoPackage pkg = new RepoPackage();
boolean success = false;
try {

InputStream is = new FileInputStream(f);
ArArchiveInputStream aais = (ArArchiveInputStream) new

ArchiveStreamFactory().createArchiveInputStream("ar", is);
ArArchiveEntry aae;
outerloop:
while ((aae = (ArArchiveEntry) aais.getNextEntry()) != null) {

if (!aae.isDirectory() && aae.getName().equals("control.tar.gz")) {
TarArchiveInputStream tais = new TarArchiveInputStream(

new GZIPInputStream(aais));
TarArchiveEntry tae;
while ((tae = (TarArchiveEntry) tais.getNextEntry()) != null) {

if (!tae.isDirectory() && tae.getName().equals("./control")) {
StringWriter w = new StringWriter();
IOUtils.copy(tais, w);
result = w.toString();
success = true;
break outerloop;

}
}

60

61

}
}

} catch (ArchiveException | IOException e) {
throw new CannotContinueException("The archive was not found to

contain metadata corresponding to a .deb package.");
}

Extracting dependencies from a comma separated list ‘ds’ with optional ver-
sion comparison or optional architecture exclusions, with the regular expression
broken over multiple lines only to ensure it is all visible on the page:

String[] split = ds.split(",");
int epoch = 0;
for(String eqdeps : split) {

String[] split2 = eqdeps.split("\\|");
for(String dep: split2) {

// This will loop multiple times only if the OR symbol is used.
// The epoch will be the same for each ORed package.
Pattern p = Pattern.compile("^\\s*([^\\s\\(\\)\\[\\]]+)

(\\s+\\(([^\\s]+) ([^\\)]+)\\))?
(\\[([^\\s\\]]+)\\])?\\s*$");

Matcher m = p.matcher(dep);
m.find();
// 1. Name
// 3. Comparator
// 4. Version
// 6. Architecture Restrictions
for(int i = 0; i<=m.groupCount(); i++){

System.out.println(i+" "+m.group(i));
}
// Finds the correct enum element to match the symbol (> -> GT)
Dependency.comparator c = toComparator(m.group(3));
Dependency d = new Dependency(m.group(1), c,

m.group(4), epoch, m.group(6));
switch (t) {

case depends:
r.setDepends(d);
break;

case breaks:
r.setBreaks(d);

62 APPENDIX E. EXCERPTS FROM INTERPRETER_DEB

break;
case provides:

r.setProvides(d);
break;

}
}
epoch++;

}

Appendix F

Project Proposal

Computer Science Project Proposal

Mitigating the Effects of Software Repository Key Compromise

S. Hollingshead, Queens’ College

Originator: S. Hollingshead

25th October 2013

Project Supervisor: Daniel Thomas

Director of Studies: Dr. R. D. H. Walker

Project Overseers: Dr. A. C. Rice & Dr. T. G. Griffin

63

64 APPENDIX F. PROJECT PROPOSAL

Introduction

In Linux, the predominant method of installing and updating software is through
distribution-provided repositories, the download taking place using a package
manager on the user’s machine. The fact these packages generally comprise of
code compiled externally, with the intention of being installed locally, requires a
large amount of trust from end users. In the case of trusting the source code, it
is possible for a user to examine it. The user also implicitly trusts the packager,
since they must have trusted the distribution and the decisions it makes, otherwise
they could change to another distribution. Trusting the communication between
computer and repository, however, is fraught with potential issues and a needless
source of exploits.

Academic papers [9] [33] outline methods that malicious actions, leveraged
from a man-in-the-middle position, can interfere with the installation of packages.
The malicious actions rely on fundamental mistakes in the interaction with the
repository, such as failure to require signed metadata, or failure to limit the scope
of damage a single stolen key can do. The only solution to this is to alter the
protocol and repository files in a backward-incompatible manner. There must
not be a fallback mode, otherwise this would continue to be exploited with the
exact same methods.

My project, therefore, aims to consider an alternative to waiting for each
existing package manager to rewrite their protocols from scratch. I will provide
a generic package manager and repository framework capable of handling the
secure retrieval of any object that can loosely be considered to be a package1. The
project’s result could be used as a temporary replacement for existing tools, where
a distribution would provide a separate copy of their files signed adequately. It
could be proposed as a replacement for the existing package management systems,
or a base upon which a new distribution could create their own package format
and handle package retrieval.

Starting Point

A large amount of work in the field already exists:

• Package formats and installation of packages are already well defined, and
I do not seek to interfere with this. My only concern is in secure package

1A single file capable of describing other ‘packages’ it depends upon, or conflicts with, and
version information to indicate when it is a candidate for an upgrade.

65

retrieval and upgrade, dependency resolution from metadata, parsing and
handing off the files to the underlying system2.

• Similarly, I do not intend to write my own implementations of any key
generation algorithm, since the existing work in this area is far more well
tested than I could hope to write myself.

• Test cases for attacks to consider can be found in papers [9] [33], and on-
going research projects are continuing to generate new reports [10] and
information on their related project homepages [6]. I can first implement
the features to fix these, then compare and contrast with the existing im-
plementations.

• Package dependencies can already be represented as a satisfiability problem,
and existing work already has conversion from .deb and .rpm packages to
this generic format [21].

• I can perform dependency resolution either using a satisfiability solver [23]
or by using other existing algorithms [5].

• Comparing existing package managers and the directory structure of their
repositories can provide guidance for mine and indicate special cases I may
otherwise have not foreseen.

Resources Required

I intend to use my own laptop, an Acer 5750G running Arch Linux. This is to
allow me to run my own local web server for repository hosting, and to give me
far more control over configurations than the MCS can.

A git repository will be created to hold the project, located in Dropbox. The
files will be pushed to a private GitHub account. If my computer fails, most of
the files can be restored to the MCS. The SRCF and DTG are both willing to
run the repositories in this case.

I will need to download multiple versions of different distributions’ packages
to test both package install and package upgrade. Old packages are provided by
both CentOS3 and Debian4.

2The project intends to implement an APT-like, or yum-like tool, not dpkg or RPM.
3http://vault.centos.org/
4http://snapshot.debian.org/

66 APPENDIX F. PROJECT PROPOSAL

Work to be done

The project breaks down into the following sub-projects:

1. The production of a well-documented specification of the communication
between the client and the repository.

2. The construction of a mechanism for signing keys as trusted using a root
key, and designating them only valid for signing certain files.

3. The creation of a repository management tool, able to handle the inflow of
new packages, facilitate signing, and promote them to be publicly down-
loadable only when given signing criteria are met.

4. The addition of a bulk-import tool, able to mass-import and mass-sign
packages from a prior system.

5. A client side tool which can communicate with the repository, securely
retrieve packages and their dependencies, and resolve conflict with existing
files on the system by considering required uninstallations.

Success Criteria for the Main Result

Since the project’s inception was to reduce the severity of attacks outlined in liter-
ature as causing package managers to operate in potentially dangerous manners
other than those expected when issued certain commands, the success criteria
must be based on collecting a list of all attacks that it is possible to locate.

For any install or upgrade command issued to the package manager, it must
perform the expected action, resolve dependencies, validate the security of the
connection, download the packages, and hand them off to be installed. When any
attack is performed from the collected list, the system must at least resist attacks
to an identical level to that of the existing systems5, although the target is to
evaluate how many more repository maintainers must be compromised before the
given attack can succeed.

Since this tool is considered to be generic, a demonstration of the exact same
successes and failures above occurring on two Linux distributions, each with a
different package format, would be adequate to show success.

5As with every system dependent on multiple keys, sufficient thefts would appear as a valid
signed chain, but the ease of stealing such an amount of keys without their revocation is highly
unlikely, and is nonetheless far more difficult than existing man-in-the-middle attacks.

67

Possible Extensions

Adding a method to make roles more or less granular. Initial implementations [33]
use very fine permissions, a key corresponding to a package. It would be good to
extend this to teams, such as the GNOME team, each owning a key that could
sign any package within their collective remit.

The downside to adding roles and signing file listings is the requirement for
long hashes in file listings, increasing the filesize greatly despite the fact only a few
full lines change at once. Investigating the potential to provide signed linediffs
for delta updates of metadata as an inherent feature could prove useful.

Another useful feature would be the ability for signatures to be added to an
existing repository’s hierarchy, relying on the fact the existing insecure package
manager would not look at the signatures, but this new tool would. This would
allow a transitional rollout without requiring separate copies of packages in two
repositories.

Timetable

Planned starting date is 24/10/2014.

1. 2013M Wk. 3–4: Create extensive list of existing vulnerabilities from
academic sources. Collect information about existing repository structures
and viable signing algorithms. Collect detailed information about the for-
mat of .deb and .rpm packages. Store all such information locally, so it
cannot disappear before the end of the project.

2. Wk. 5–6: Produce repository protocol document. Create preliminary
repository to specification. Import in packages, signed manually.

3. Wk. 7–8: Create both tool to give keys authority, and repository tool
for accruing package signatures and promoting relevant packages into main
repository.

4. Vacation: Implement most of the package manager, including communica-
tion, key validation, metadata analysis, downloading, and system package
version checking for upgrades. Dependency resolution may not be complete,
particularly in edge cases such as needing to uninstall packages.

5. 2014L Wk. 0–1: Finish package manager, audit system to ensure correct
operation, tweak as needed. Produce progress report.

68 APPENDIX F. PROJECT PROPOSAL

6. Wk. 2–3: Begin evaluation. Examine what added resilience to key compro-
mise the new software offers over existing package managers, and evaluate
any time trade-off in the new system. Perform a stress test to examine
potential worst-case performance.

7. Wk. 4–5: Based on results, make improvements in inadequate areas and
re-evaluate cases until considered acceptable. Prepare the framework of the
dissertation to ensure acceptable content exists for all sections.

8. Wk. 6+: These weeks are intentionally left empty to allow project overrun.
After this period, the project must be feature-complete.

9. Vacation: Entirely complete and proofread dissertation with feedback.
Easter will be solely for examinations.

	Introduction
	Principal Motivation
	Terminology

	Preparation
	Algorithms and Protocols
	Dependency Resolution
	Package Formats
	Security Investigation and Threat Model
	Creating an Exploit
	Third Party Tools Used
	Software Development Model
	Requirements Analysis
	Final Test Plan

	Implementation
	Server
	Trust Delegation and Key Validation
	Repository Structure
	Abstracting
	Combining
	Committing
	Integration Testing

	Client
	File List
	Dependency Resolution
	Installation and Removal
	Integration Testing
	Download Nuances

	Evaluation
	Overall Security
	Comparative Amount of Communication Security
	Resilience to Key Compromise

	Performance testing
	Server
	Acceptable Daily Rate
	Most Popular Packages
	Ease of Implementation

	Client
	Dependency Resolution
	Comparative Filesizes

	Testing Summary

	Conclusion
	Completion Of Requirements
	Areas Needing Improvement
	Future Work
	Closing Thoughts

	Bibliography
	Excerpt of Debian Policy Manual Chapter 5
	Excerpt of Portage Documentation
	Correct attempt to install `kernel' and `bc'
	Hijacked attempt to install `kernel' and `bc'
	Excerpts from Interpreter_DEB
	Project Proposal

